اسرار فیزیک کوانتوم

وقتی گالیله در سال ۱۶۱۰ یافته های خود را در تائید نظر کوپرنیک مبنی بر ثابت نبودن زمین و گردش آن به دور خورشید منتشر کرد باعث شد تا وی از سوی کلیسا مورد بازجویی و تفتیش عقاید قرار گیرد. این نظریه مخالف نص کتاب مقدس بود و از سویی با نظریات ارسطو که کلیسا حامی آن بود همخوانی نداشت. وی مجبور به امضای توبه نامه‌ای با این مضمون شد:

در هفتادمین سال زندگی در مقابل شما به زانو درآمده‌ام و در حالی که کتاب مقدس را پیش چشم دارم و با دستهای خود لمس می‌کنم توبه می‌کنم و ادعای خالی از حقیقت حرکت زمین را انکار می‌کنم و آنرا منفور و مطرود می‌نمایم.

شش سال بعد رسما از تدریس نظریه کوپرنیک در دانشگاه منع شد و تا سالها بعد مرتب مورد بازخواست کلیسا قرار می‌گرفت. سرانجام گالیله علیرغم اعتقاد درونی اش، مجبور شد اعتراف کند که نظریه ارسطو درست است و زمین مرکز جهان است. ولی با این حال همواره تا آخرین لخظه عمر قلبا اعتقاد داشت که زمین مرگز جهان نیست و به دور خورشید می چرخد....

  

این را مقایسه کنید با کوانتوم

نظریه کوانتومی توسط پلانک مطرح شد اما خودش از آن خشنود نبود وقتی انشتین فتو الکتریک را براساس تئوری پلانک توضیح داد که تائییدی بر صحت نظریه او بود  بلافاصله با آن به مخالفت برخاست

خود انشتین که باعث پشرفت و توسعه این نظریه بود با پیشرفت های بعدی از مخالفان سرسخت کوانتوم شد

شرودینگر که فرمولبندی مکانیک کوانتومی را انجام داد و به خاطر آن جایزه نوبل دریافت کرد هم در صحت کار خود شک داشت و کوشید تا با آزمایش ذهنی گربه در جعبه دیگران را متوجه پوچی کوانتوم کند

بدون شک، معمای رمزآلود فیزیک کوانتوم، معمای عمیقی است ولی رازی که در بطن فیزیک کوانتوم نهفته، به طور غیر مستقیم، درک ما را از حقیقی بودن جهان و هر آنچه در آن است (از جمله خود ما)، مورد هدف قرار می‌دهد درحالی ‌که تئوری فیزیک کوانتوم یکی از تئوری‌هایی است که از پیکار آزمایشات فراوانی در عرصه‌ی علم، جان سالم به در برده است. علی‌رغم مشخصه‌های نامأنوس فیزیک کوانتوم، برای بسیاری از دانشمندان در صحت این نظریه، تردید چندانی باقی نمانده. و مقاومت عده ای در برابر آن ناموجه جلوه می کند

 

آزمایش دو شکاف (The Double Slit Experiment)

برای صحبت درباره‌ی فیزیک کوانتوم، بهترین کار این است که با آزمایش یانگ در سال 1803 شروع کنیم. در آزمایش یانگ، از یک منبع ریز نور و یک صفحه استفاده شده بود. یانگ، میان این دو شیء، یک مانع با دو شیار نازک عمودیِ موازی با یکدیگر قرار داد.

یانگ می‌دانست در صورتی که نور، فقط جریانی از ذرات ریز باشد، باید از هر کدام از شکاف‌ها گذشته و روی صفحه‌ی پشت سوراخ‌ها جمع شود.

این دقیقاً همان چیزی بود که با پوشاندن یکی از شکاف‌ها و باز گذاشتن شکاف دیگر، اتفاق افتاد. یک نوار عمودی باریک از نور، روی صفحه‌ی پشت سوراخ ظاهر شد. یانگ مسلماً انتظار داشت وقتی شکاف دیگر را هم باز کرد، دو نوار باریک نوری ببیند، اما این طور نشد.

بیشتر بخش‌های صفحه را مجموعه‌ای از نوارهای عمودی روشن و تاریک پر کرد. یانگ این مشاهده را چنین توجیح کرد . نور، مثل یک موج عمل می‌کند و از هر دو شکاف می‌گذرد. بعد از گذشتن از میان شکاف‌ها، با یکدیگر تداخل می‌کنند. به این ترتیب، وقتی دو قله‌ی موج با هم تلاقی می‌کنند، باعث تقویت یکدیگر می‌شوند و وقتی یک قله‌ی موج و یک دره‌ی موج با هم تلاقی می‌کنند، هر دو خنثی می‌شوند. در نتیجه، مجموعه‌ای از نوارهای روشن و تاریک روی صفحه دیده می‌شود. دانشمندان، این پدیده را الگوی تداخل (interference pattern) می‌نامند، زیرا از تداخل امواج با یکدیگر حاصل می‌شود.

مثالی از الگوی تداخل

پس نور بدون شک یک موج بود. اما شواهدی نیز وجود داشت که نشان می‌داد خواص ذره ای نیز دارد (که بعدها به آن فوتون گفته شد). در نهایت چنین نتیجه گیری شد که فوتون‌ها ماهیتی دوگانه دارند و به صورت موج و ذره عمل می‌کنند. با این حال، دانشمندان هنوز هم از خود می‌پرسیدند اگر بتوانند فوتون‌ها را یکی یکی از دو شکاف بگذرانند، چه چیزی رخ خواهد داد.

سرانجام، منبع نوری اختراع شد که قادر بود هر بار تنها یک فوتون آزاد کند. آزمایش دو شکاف یانگ دوباره انجام گرفت. اما این بار به جای صفحه‌ی عادی، از کاغذ عکاسی استفاده شد، زیرا یک فوتون، کم‌نورتر از آن است روی صفحه دیده شود. حال آن که بعد از عبور میلیون‌ها فوتون از شکاف‌ها (به صورت تک تک)، الگوی مورد نظر بر روی کاغذ عکاسی قابل مشاهده می‌شد.

با ظاهر کردن عکس، همان الگوی تداخل پیشین مشاهده شد. دانشمندان این‌گونه نتیجه گرفتند که هر یک از فوتون‌ها به صورت موجی حرکت کرده‌، به طور همزمان از میان دو شکاف رد شده و با خودشان تداخل داشته‌اند و تنها هنگامی که سرانجام با کاغذ عکاسی برخورد کرده‌اند، به صورت ذره‌ای در موقعیت خاص ظاهر شده‌اند، و این بسیار عجیب بود.

دانشمندان تصمیم گرفتند کنار شکاف‌ها، ردیابِ فوتون کنار قرار دهند تا مسیر واقعی فوتون را مشاهده کنند. آن‌ها موفق شدند، ولی وقتی این آزمایش را انجام دادند، الگوی تداخل ناپدید شد و تنها دو خط باریک (پشت هر سوراخ یکی)، روی صفحه ظاهر شد. ظاهراً فوتون‌ها «می‌دانستند» که در معرض مشاهده شدن قرار دارند و به همین دلیل، به جای این که به صورت موجی عمل کنند، رفتار ذره‌ای پیش گرفته‌اند!

دانشمندان سپس تصمیم گرفتند که ردیاب فوتون را در جهتی از صفحه قرار دهند که با منبع نور فاصله‌ی بیشتری داشته باشد، تا به این ترتیب فوتون، فقط بعد از عبور از میان شکاف دیده شود. اما تغییری در نتیجه حاصل نشد. باز هم ظاهراً فوتون پیش از رسیدن به صفحه، «می‌دانست» در سمت دیگر آن یک ردیاب وجود دارد و به همین دلیل پیش از عبور از شکاف‌ها، به ذره تبدیل می‌شد.

سرانجام، دانشمندی به نام جان ویلر (John Wheeler) آزمایشی پیشنهاد کرد که طی آن، صفحه می‌توانست درست در آخرین لحظه‌ی پیش از برخورد فوتون، با یک دستگاه ردیاب نوری جایگزین شود، به این ترتیب می‌شد فهمید فوتون از کدام شکاف عبور کرده است. تصمیم درباره‌ی کنار کشیدن یا نکشیدن صفحه، باید بعد از عبور فوتون از میان شکاف گرفته می‌شد. در زمانی که ویلر این آزمایش را مطرح کرد، انجام آن از لحاظ فنی غیرممکن بود. اما چند سال بعد، امکان انجام آزمایش به وجود آمد. نتیجه‌ی آزمایش چنین بود: هنگامی که صفحه در جای خود قرار داشت، فوتون طبق الگوی تداخل رفتار می‌کرد، حال آن که اگر صفحه در لحظه‌ی آخر، برداشته می‌شد تا اطلاعات مربوط به این که از کدام شکاف عبور کرده، به دست آید، فوتون طبق الگوی تداخل رفتار نمی‌کرد. گویا فوتون می‌دانست هنگام رسیدن به شکاف چگونه عمل کند، هر چند که تصمیم درباره‌ی برداشتن یا برنداشتن صفحه در لحظه‌ی آخر گرفته می‌شد. ظاهراً یا فوتون می‌توانست آینده را پیش‌بینی کند یا این‌که تصمیم درباره‌ی قرارگیری صفحه، می‌توانست گذشته را تغییر دهد.

دانشمندان این طور نتیجه گرفتند که در نظریه‌ی کوانتوم، جایی برای علیت وجود ندارد. گویا اتفاقاتی که در زمان حال می‌افتند، می‌توانند گذشته را تغییر دهند، و این اوج غرابت کوانتوم بود.

اگر خواندن این مطالب، شما را آشفته کرده، نگران نباشید. افراد زیادی از این مسئله آشفته شده‌اند، از جمله آلبرت انشتین.

نور ستارگان، درخشش ستارگان

امشب بیرون بروید و ستارگان را تماشا کنید. اگر زمستان باشد (در نیکره‌ی شمالی)، حتماً خواهید توانست صورت فلکی شکارچی (یا جبار) را ببینید. تشخیص این صورت فلکی آسان است، زیرا سه ستاره در یک خط، کمربند شکارچی را تشکیل می‌دهند. به ستاره‌ی وسطی نگاه کنید. او یک ستاره‌ی ابرغولِ سفید-آبی به نام اپسیلون جبار (Alnilam) است که 1300 سال نوری از ما فاصله دارد. وقتی به این ستاره نگاه می‌کنید، چه اتفاقی می‌افتد؟ بر اساس بسیاری از کتاب‌ها، هزار و سیصد سال پیش- اوایل قرون وسطی در اروپا- الکترونی برانگیخته در یکی از اتم‌های هیدروژن موجود در لایه‌های بیرونی این ستاره، یک ذره‌ی انرژی ( یک فوتون) آزاد کرده است:.

فوتون آزاد شده از اپسیلون جبار، با سرعت نور، حدوداً 300000 کیلومتر در ثانیه، در جهت زمین حرکت کرده است. اگرچه فوتون‌ها چندان تحت تأثیر جاذبه قرار نمی‌گیرند، اما سیارات، ستارگان و سایر اجرام آسمانی که در مسیر فوتون یاد شده قرار دارند، به طور خفیفی بر آن تأثیر گذاشته و مسیری خاص به آن می‌دهند. با نزدیک شدن به زمین، فوتون، بدون برخورد با مولکول‌های اتمسفر، از آن‌ها می‌گذرد. درست وقتی به آسمان نگاه کردید، این فوتون توسط شما دریافت می‌شود. این فوتون (همراه بسیاری فوتون‌های دیگر)، شبکیه را که درست پشت چشمتان قرار دارد، تحریک می‌کند، پیغامی به مغز شما فرستاده می‌شود و شما در مغزتان نور ستاره را می‌بینید. این سیر حوادث، بسیار جالب است، منتها، با توجه به تئوری کوانتوم این به هیچ وجه چیزی نیست که اتفاق می‌افتد.

هیچ کس دقیقاً نمی‌داند در سطح کوانتوم چه اتفاقی می‌افتد، با این حال، چند تفسیر از نظریه‌ی کوانتوم وجود دارد که می‌توانند به ما در فهم مسئله کمک کنند. معروف‌ترین آن‌ها تفسیر کُپنهاگی(Copenhagen Interpretation) نامیده می‌شود، زیرا قسمت عمده‌ی آن توسط نیلز بور (Niels Bohr)، فیزیکدان اهل کپنهاگ، ارائه شده استدانشمندان و مهندسان، سال‌هاست از کپنهاگ به عنوان روشی استاندارد جهت درک دنیای کوانتوم استفاده می‌کنند. تفسیر کپنهاگی نظریه‌ی کوانتوم، مشاهده شدن اپسیلون جبار توسط شما را این گونه توضیح می‌دهد:

آنچه که حدود 1300 سال پیش، اتم هیدروژن را ترک کرد، فوتون نبود، بلکه یک موج احتمال بود. این موج، بیانگر مکان احتمالی فوتون نبود، بلکه بیانگر این احتمال بود که در صورت مشاهده شدن فوتون، این اتفاق در چه مکانی روی خواهد داد. موج با سرعت نور به بیرون حرکت کرد، اما نه به سوی زمین، بلکه به شکل کُره‌ای که با سرعت نور بزرگ و بزرگ‌تر می‌شد. سیارات، ستارگان و سایر اجرامِ نزدیک به آن، بر مکان احتمالی مشاهده‌ی شدن فوتون تأثیر گذاشتند، اما هنوز این امکان وجود داشت که فوتون در هر جایی از کره‌ی در حال انبساط، ظاهر شود. موج/کره، 1300 سال بزرگ شد، تا این که قطری برابر 2600 سال نوری پیدا کرد. جبهه‌ی موج از اتمسفر زمین گذشت. درست در این لحظه، شما چشمتان را بر روی اپسیلون جبار متمرکز کردید و جبهه‌ی موج با سلول‌های شبکیه‌ی چشم شما درگیر شد. سپس، جایی میان شبکیه‌ی چشم شما که با موج درگیر شده و مغزتان که ستاره را دیده، این واقعه رخ داد.

بلافاصله، موج احتمال به قطر 2600 سال نوری، از میان رفت و فوتون در برخورد با شبکیه‌ی چشم شما، ظهور کرد. اگر شما در لحظه‌ی مناسب به آسمان نگاه نکرده بودید، شاید فوتون، چند ثانیه‌ی دیگر، در سوی دیگر اپسیلون جبار، توسط ناظر بیگانه‌ای در یک سیاره‌ی دیگر با فاصله‌ی هزاران سال نوری، از هم می‌پاشید. اما مشاهده شدن فوتون توسط شما در کره ی زمین، برای همیشه این احتمال را از میان برد.

وقتی شما این فوتون را دیدید، سرنوشتی منحصر به فرد برایش رقم خورد. مسیری ایجاد شد تا او از آن اتم هیدروژن در اپسیلون جبار، به چشم شما برسد.

شاید این طور به نظر بیاید که نابودی چیزی با وسعت 2600 سال نوری غیرممکن است، زیرا لازمه‌ی آن، پیشی گرفتن از سرعت نور می‌باشد. اما این مورد، تنها یکی از موارد متعددی است که در آن، نظریه‌ی کوانتوم، حداکثر سرعت کیهانی را به چالش می‌طلبد. این مسئله نیز، انشتین را عمیقاً آشفته کرد.

چه چیزی در فیزیک کوانتوم، انیشتین را بر آشفته می کرد؟ اول از همه، غیر قابل پیش‌بینی بودن آن. اگر قرار باشد یک تفنگ را تنظیم کنید و آن را به هدف بزنید، با معلوم بودن سرعت و جهت گلوله، تعیین مسیر آن بعد از خروج از لوله‌ی تفنگ، بسیار ساده است. اما فوتون این طور نیست. همان‌طور که مثالِ ما درباره‌ی موج نورِ رهسپار شده از یک ستاره‌ی دوردست، نشان داد، فوتون به صورت موج احتمال حرکت می‌کند. فوتون ممکن است هرجایی در مسیر حرکت موج، ظاهر شود. هر چند، احتمال ظهور آن، در بعضی مکان‌ها بیشتر است. این باعث شد انشتین به طعنه بگوید که باورش نمی‌شود «خدا با هستی تخته نرد بازی کند».

انشتین کمک کرد نظریه‌ی کوانتوم به وجود بیاید، ولی بسیار از آن آشفته گشت.

دومین نکته‌ای که انشتین را آزار می‌داد، این ایده بود که با توجه به کپنهاگ، یک جسم پیش آن‌که مورد مشاهده قرار گیرد، تنها به شکل موج احتمال وجود دارد. شاید وقتی حرف از یک فوتون باشد، این مسئله چندان مهم به نظر نرسد، چون بسیار بسیار کوچک است. اما این تنها فوتون‌ها نیستند که از قوانین فیزیک فیزیک کوانتوم پیروی می‌کنند، بلکه الکترون‌ها، پروتون‌ها، اتم‌ها و مولکول‌ها نیز مشمول این قوانین هستند. همه‌ی آن‌ها پیش از مشاهده شدن، تنها موج‌اند و آزمایش دو شکاف، با موادی به بزرگی مولکول‌های فولرن (Fullerene) که 60 اتم کربن دارند، انجام شده است.

در نهایت اگر فکر کنیم، می‌بینیم تمام جهان ما، از اتم‌ها و مولکول‌ها تشکیل شده و خود ما نیز. آیا این بدان معناست که ما تنها، امواج بزرگ احتمال هستیم؟

این تصور که هر چیزی در جهان ما، در صورت مشاهده نشدن، ماهیتی مستقل ندارد، انشتین را واداشت به شوخی بگوید: «ترجیح می‌دهم فکر کنم ماه، حتی وقتی نگاهش نمی‌کنم، باز وجود دارد».

آزمایش فرضی گربه‌ی شرودینگر

همانطور که گفتیم انشتین، تنها بنیانگذار نظریه‌ی کوانتوم نبود که به آن شک داشت. اِروین شرودینگر، که معادلات کلیدی را برای پیش‌بینی چگونگی تغییر سیستم کوانتوم در طول زمان مطرح کرد. و این کار برای او جایزه‌ی نوبل سال 1933 را به ارمغان آورد. با بعضی از مفاهیم فیزیک کوانتوم، مشکل داشت و برای نشان دادن بی‌معنا بودن آن‌ها، مثالی مطرح کرد. آزمایش فرضی مشهور گربه را مطرح کرد تا نشان دهد این نظریه ناقص است.

در آزمایش فرضی شرودینگر، یک گربه درون جعبه‌ای مهر و موم شده قرار می‌گیرد. در درون این جعبه، یک دستگاه «نابودگر» شامل یک ماده‌ی رادیواکتیو، یک شمارشگر گایگر مولر و یک ظرف شیشه‌ای قرار دارد. ماده‌ی رادیواکتیو به اندازه‌ای است که در عرض یک ساعت به احتمال 50 درصد تجزیه شده، ذره‌ای آزاد می‌کند که باعث به کار افتادن شمارشگر می‌شود. شمارشگر نیز به گونه‌ای تعبیه شده که در صورت شناسایی ذره، چکشی را رها می‌سازد و موجب متلاشی شدن ظرف شیشه‌ایِ پر از گاز کشنده‌ی هیدروژن سیانید می‌شود.

بعد از گذشت یک ساعت، احتمال این که جعبه را باز کنید و گربه را زنده یا مرده بیاید، پنجاه/ پنجاه است. اما گربه پیش از باز کردن جعبه، در چه وضعیتی است؟ از آنجایی که نابودی اتم، رویدادی کوانتومی است، با توجه به تفسیر کپنهاگ، می‌توان گفت تا زمانی که اتم (به عنوان تابع موج احتمال)، مشاهده نشده، در حالت برهم نهی قرار دارد- یعنی همزمان در دو وضعیت است. به این معنی که دستگاه نابودگر و گربه نیز در حالت برهم نهی هستند، گربه هم زنده است و هم مرده.

شرودینگر چنین ایده‌ای را مضحک یافت و تلاش کرد از آن، برای نشان دادن کاستی‌های نظریه‌ی کوانتوم، استفاده کند و بگوید این نظریه یا اشتباه است یا ناقص.

این امر با نحوه عملکرد جهان در مقیاسی که برای بشر قابل درک است، مغایرت دارد. شاید احمقانه به نظر برسد اما شرودینگر تاکید داشت ، وجود اصل بر هم نهی از لحاظ ریاضی ضروری است، تا تئوری کوانتوم بتواند پیش گویی های دقیق خود را از عملکرد جهان در سطح زیراتمی ارائه دهد. طی بیش از نیم قرن، گربه مرده و زنده شرودینگر با فیزیکدانان لجبازی می کرد و بنابراین لازم بود به طور دقیق دریابیم که چگونه حوزه کوانتوم با جهان قابل درک توسط انسان مرتبط می شود.

فروپاشی اتمی نه اتفاق می افتد و نه اتفاق نمی افتد، گربه نه کشته می شود و نه کشته نمی شود، مگر هنگامی که ما به درون جعبه نگاه کنیم و ببینیم که چه اتفاقی رخ داده است. نظریه پردازانی که تفسیر استاندارد از مکانیک کوانتومی را می پذیرند می گویند که گربه در حالتی غیرقطعی و نامعین، به  عبارت دیگر در یک « ابرمرتبه حالت ها » ( Superposition of States )، نه مرده و نه زنده وجود دارد، تا زمانی که یک مشاهده گر واقعاً به درون جعبه بنگرد و ببیند که گربه زنده است یا مرده در نتیجه برخلاف میل شرودینگر، این تجربه تخیلی نه تنها باعث نشد که فیزیکدانان پوچی بعضی از خصوصیات نظریه کوانتوم را درک کنند، بلکه گربه شرودینگر برای اکثریت فیزیکدانان به مثال اعلای استلزام های غیرمعمول و فوق العاده این نظریه بدل شد. « ابرمرتبه حالت ها » به جای به هم ریختن نظریه کوانتوم، به خصلت معرف آن بدل شد. آنهایی که تجربه خیالی شرودینگر را با معنایی که در نظر داشتند مطرح می کردند، می توانستند با این حقیقت تسکین یابند که موقعیت یاوه ای که در آن گربه به طور همزمان هم زنده و هم مرده است به طور واقعی در آزمایشگاه قابل بازآفرینی نیست.

و در حالی که در موجودیت های فیزیکی در اندازه اتم ممکن است در یک « ابرمرتبه حالت ها » وجود داشته باشند، موجودیت های بزرگ تر، به خصوص در اندازه یک گربه، که متشکل از میلیاردها اتم هستند، در یک حالت منفرد و معین ثابت می شوند. در نتیجه افرادی که با موضع اینشتین همدلی دارند می توانند مدعی شوند که گرچه خصوصیات غریب کوانتومی ممکن است در جهان زیراتمی مصداق داشته باشند، در دنیای روزمره متشکل از اشیای معمول مثل گربه، کتاب و افراد و... خدا از هر لحاظ تاس نمی اندازد. اما اکنون حتی این دفاع (تاحدی نومیدانه) از شعور عام نیز در خطر سرنگون شدن است.

کنش شبه وار از راه دوریا رفتاری غریب در فاصله

دیدیم که دنیای کوانتوم دنیایی است که  در آن، هر چیزی، فقط در صورتی وجود داشت که نگاهش می‌کردیم، دنیایی که در آن گربه‌ها می‌توانستند همزمان، هم مرده باشند و هم زنده. حالا، به این موضوع خواهیم پرداخت که چگونه بر اساس برخی تفاسیر از فیزیک کوانتوم، هر چیزی در جهان، به صورت آنی، با تمام چیزهای دیگر در هر فاصله‌ای از آن که قرار داشته باشد، مرتبط است.

سال 1927، شاهد آغاز مجموعه‌ای از مناظرات، میان دو تن از برجسته‌ترین دانشمندان جهان در آن روزگار بود: انشتین ، نویسنده‌ی نظریه‌ی نسبیت عام و نیلز بور (Niels Bohr)، یکی از اولین محققان در نظریه‌ی کوانتوم. نخستین برخورد میان این دو، در پنجمین کنفرانس بین‌المللی سلوی (Solvay Conference)، درباره‌ی الکترون‌ها و فوتون‌ها اتفاق افتاد، که در بروکسل بلژیک برگزار شده بود. تعداد شرکت‌کنندگان این کنفرانس اندک بود، اما همگی آنان، افراد برجسته‌ای بودند. از میان 29 دانشمند حاضر در کنفرانس، 17 نفر یا برنده‌ی جایزه‌ی نوبل بودند، یا این که بعدها صاحب نوبل شدند.

اگرچه انشتین، از پایه‌گذاران تئوری کوانتوم بود، اما با آن مشکل داشت. یکی از مهم‌ترین توانایی‌های انشتین به عنوان یک دانشمند، توانایی طراحی آزمایشات فرضی (Thought Experiments) بود، آزمایشاتی که در دنیای واقعی، غیرممکن هستند، اما انجامشان در ذهن، می‌تواند روشنگر بخشی از ماهیت فیزیک باشد. (یکی از جالب‌ترین آزمایشات فرضی انشتین، این بود که اگر او بتواند دوچرخه‌اش را با سرعت نور براند، دنیا به چه شکلی دیده خواهد شد). با این حال، استفاده از این نوع آزمایشات فرضی، برای دستیابی با ماهیت حقیقی نظریه‌ی کوانتوم، ناامیدکننده بود. نتایج این آزمایش‌ها، غیرمنطقی به نظر می‌آمدند؛ اشیاء وجود نداشتند مگر آن‌که نگاهشان می‌کردید، گربه‌ها همزمان مرده و زنده بودند و اگر از مکان دقیق یک ذره (مثل فوتون) آگاهی داشتید، چگونگی حرکت آن مشخص نمی‌شد.

اما بور، با این مسئله، مشکلی نداشت. ظاهراً معماهای این تئوری، فکر بور را به خود مشغول نمی‌کرد، و او تنها به نتایج معادلات توجه داشت. همان طور که دیوید مرمین فیزیکدان گفت، رویکرد نیلز بور، آن‌گونه که در تفسیر کوپنهاگی معروفش از فیزیک کوانتوم بیان شده، به این صورت است: «خفه شو و محاسبه کن

رویارویی بارز انشتین/ بور زمانی شروع شد که انشتین، مثالی ارائه داد تا نشان دهد تئوری کوانتوم، یا اشتباه است یا ناقص. بور، عصر روز بعد، به تفکر درباره‌ی این مسئله پرداخت و فردای آن روز، پاسخی برای رد انتقاد انشتین، ارائه داد. این مباحثات زمانی بالا گرفت که در سال 1935، انشتین همراه با بوریس پودولسکی و نیتان روزن، مقاله‌ای ارائه کرده، در آن به توضیح مطلبی پرداخت که به پارادوکس EPR مشهور شد (Einstein- Podolsky- Rosen Paradox).

رفتاری غریب در فاصله Spooky Action at a Distance

در دهه، ۱۹۲۰ شرودینگر اظهار کرد در تئوری کوانتوم امکان ساخت یک زوج فوتون ـ بسته های تفکیک ناپذیر انرژی ـ «درهم تنیده» وجود دارد. این فوتون ها چنان درهم تنیده اند که با دانستن حالت یکی از فوتون ها می توان حالت فوتون دیگر را به طور آنی دریافت.

فوتون‌های درهم‌تنیده، در هر فاصله‌ای از هم که قرار داشته باشند، حتی اگر چندین سال نوری از هم دور باشند، می‌توانند بلافاصله بر یکدیگر تأثیر بگذارند.

عبارت «آنی» اینشتین را با دردسر مواجه ساخت، چرا که این عبارت به طور تلویحی بیان می کرد، می توان سیگنال ها را سریع تر از سرعت نور انتقال داد. اینشتین این مفهوم نامتعارف را با عبارت «کنش شبح وار از راه دور» توصیف کرد. از آنجایی که تجهیزات دقیقی برای آزمایش وجود نداشت، این ایده ها تا سال ۱۹۸۲ در بن بست گرفتار بود.

آزمایش فرضی انشتین در مقاله‌ی یاد شده، به این ترتیب است که یک ذره (ما می‌توانیم یک پیون را به عنوان مثال در نظر بگیریم) برداشته شده و می گذاریم تا به دو فوتون (ذره‌های نور) تجزیه شود. این دو فوتون در دو جهت متفاوت به حرکت درمی‌آیند. از آنجایی که این دو فوتون، از یک پیون خارج شده‌اند، درهم‌تنیده‌اند (Entangled Photons)، یعنی تابع موج یکسانی دارند. این دو فوتون، دارای چند ویژگی مکمل نیز هستند. برای مثال چرخش آن‌ها: پیون در ابتدا هیچ چرخشی نداشت، بنابراین، اگر یک فوتون، چرخشی رو به بالا بر محور x خود داشته باشد، فوتون دیگر، برای ایجاد تساوی، باید داری یک چرخش رو به پایین بر محور x خود باشد.

اما با توجه به تئوری کوانتوم، یک ویژگی تا زمانی که اندازه‌گیری نشده، وجود ندارد. بنابراین وقتی فوتون اول را اندازه می‌گیرید و می‌بینید چرخشی رو به بالا دارد، فوتون دیگر، بلافاصله باید چرخشی رو به پایین به خود بگیرد، حتی اگر یک سال نوری از فوتون اول فاصله داشته باشد. به عقیده‌ی انشتین و نویسندگان دیگر این مقاله، چنین چیزی منطقی نبود. یا فوتون‌ها در زمان جدا شدن از یکدیگر، اطلاعات مربوط به چرخش را با خود برده بودند، یا این که فوتون اول، هنگامی که مورد بررسی قرار گرفته، اطلاعات چرخش خود را بلافاصله با سرعتی بیشتر از سرعت نور، به فوتون دوم، که در فاصله‌ی بسیار دوری از آن قرار دارد، منتقل کرده است. انشتین این تأثیر را «رفتار غریب در فاصله» نامید.

از آنجایی که اطلاعات نمی‌توانند با سرعتی بیش از سرعت نور منتقل شوند، انشتین چنین استدلال کرد که فوتون‌ها، احتمالاً دارای «متغیرهای پنهان» هستند که از زمان به وجود آمدن فوتون‌ها، اطلاعات چرخش را شامل می‌شدند. در تئوری کوانتوم، چنین متغیرهایی وجود نداشتند، پس تئوری حتماً ناقص بود.

بل و برهان‌اش

مشکل «رفتار غریب در فاصله‌»‌ی انشتین، بعد از مرگ‌اش در سال 1955 و حتی پس از مرگ بور در سال 1962، حل‌نشده باقی ماند. درسال 1964، یک فیزیکدان ایرلندی به نام «جان بل» (John Bell) مقاله‌ای منتشر ساخت با عنوان «در باب مسئله‌ی متغیرهای پنهان در مکانیک کوانتوم». بل در ابتدا، این ایده‌ی انشتین را که احتمالاً متغیرهای پنهانی وجود دارد، تأیید کرد. وی در مقاله‌اش، آزمایشی ارائه کرد تا معلوم شود آیا متغیرهای پنهان می‌توانند دلیلی برای آنچه مشاهده شده باشند، یا نه.

تنها زمانی حل شد که بل این برهان را مطرح کرد و کلازر با انجام آزمایشی نشان داد که بور، درست می‌گفته است.

در آزمایش بل، دو ذره‌ی درهم‌تنیده، ایجاد شده و به سمت دو فرد فرستاده می‌شوند (به عنوان مثال آلیس و باب). سپس، این دو نفر، ذره‌ها را مورد آزمایش قرار می‌دهند تا ویژگی‌های مکمل آن‌ها مشخص شود. درک جزئیات آزمایش، دشوار است، اما بل توانست نشان دهد که طی آزمایشات متعدد، در صورت وجود ویژگی‌ها از ابتدا، تعداد دفعاتی که آلیس و باب نتایج یکسانی گزارش می‌کنند، ، در مقایسه با وضعیتی که ویژگی‌ها در زمان بررسی و اندازه‌گیری فوتون اول، ایجاد شوند، متفاوت خواهد بود. بل تصور می‌کرد پس از آن که برهانش را (که اغلب به دلیل یکی از پیش‌بینی‌هایش «نادرستی بل» خوانده می‌شود) منتشر کند، سال‌ها طول خواهد کشید تا کسی بتواند در آزمایشی واقعی، آن را امتحان کند. اما تنها یک سال بعد، یکی از فارغ‌التحصیلان متهور دانشگاه کلمبیا، «جان کلازر» (John Clauser) توانست صورت ساده‌ای از این آزمایش را انجام دهد. او نشان داد رفتار فوتون‌ها مطابق همان چیزی است که توسط فیزیک کوانتوم پیش‌بینی شده، نه آنچه که از تئوری «متغیر پنهان» انتظار می‌رود. یک دانشمند دیگر به نام «آلن اسپکت» (Alen Aspect) بعدها طی آزمایشاتی با دقت و صحت بیشتر، ثابت کرد برخلاف تردیدهای انشتین، بی‌شک «رفتار غریب در فاصله» در جهان کوانتوم وجود دارد.

کار علمی بل، در حوزه ی تجربی، سرآغازی بود برای آنچه که تصور می‌شد بیشتر موضوعی است فلسفی. وی چنان تأثیر به سزایی داشت که «هنری استپ» (Henry Stapp) از لابراتوار لورنس برکلی کالیفرنیا، عملکرد بل در حوزه‌ی فیزیک کوانتوم را «ژرف‌ترین کشف علمی» نام نهاد.

تفسیر بوهم

بل، علی‌رغم این که خود، صحت تئوری کوانتوم را اثبات کرده بود، اما به دلیل وابستگی تفسیر استاندارد کپنهاگ به مشاهده، برای شکستن تابع موج و حقیقی شدن یک ذره (و به همان ترتیب یک گربه)، از این تفسیر پشتیبانی نمی‌کرد. بل، تفسیر ارائه شده توسط دیوید بوهم (David Bohm) فیزیکدان را منطقی‌تر یافت. برای درک تفسیر بوهم، بازگشت به مثالمان در قسمت اول درباره‌ی نگاه کردن به ستاره‌ی اپسیلون جبار در برج شکارچی، می‌تواند کمک شایانی باشد. در بحث خود درباره‌ی تفسیر کوپنهاگ، دیدیم که یک فوتون- یک ذره‌ی نور- در واقع اپسیلون جبار را ترک نمی‌کند، بلکه، این موج احتمال است که به چشمان ما می‌رسد. در تفسیر بوهم، فوتونی واقعی، که توسط یک نیروی «پتانسیل کوانتوم» هدایت می‌شود، از ستاره بیرون می‌آید. این فوتون، مثل چراغ دریایی، در زمان به عقب برمی‌گردد تا ذره را به ما برساند. طبق تفسیر بوهم، همه چیز در دنیا به چیزهای دیگر مرتبط است. در این تفسیر، برخلاف تفسیر کوپنهاگ، نیازی به تابع موج نیست تا به محض دیده شدن، بشکند. با این حال، این تفسیر نیز، خالی از ایراد نیست. اگرچه تفسیر بوهم جبرگرایانه است، یعنی با اطلاعات کافی می‌توان هرچیزی را که در جهان اتفاق خواهد افتاد را از آغاز پیش‌بینی کرد، اما برای حرکت به عقب در زمان و طی یک فاصله‌ی بسیار زیاد، به اطلاعات نیاز هست. به همین دلیل، تفسیر بوهم، طرفداران چندانی میان دانشمندان نداشته است

تفسیر دنیاهای چندگانه

شاید مهم‌ترین جایگزین برای تفسیر کپنهاگ در میان فیزیکدانانی که نظریه‌ی کوانتوم را مطالعه می‌کنند، تفسیر دنیاهای چندگانه (the "Many Worlds" interpretation) باشد. دانشمندان برجسته‌ای همچون استیون هاوکینگ (Stephen Hawking) و ریچارد فاینمن (Richard Feinman) از طرفداران تفسیر دنیاهای چندگانه هستند و روز به روز به حامیان این تفسیر اضافه می‌شود. تفسیر دنیاهای چندگانه، توسط هیو اِوِرِت سوم (Hugh Everett III)، فارغ‌التحصیل دانشگاه پرینستون، در ابتدا با نام «فرمول‌بندی حالت نسبی (the "relative state" formulation) ارائه شد.

طبق تفسیر دنیاهای چندگانه، جهان دو شاخه می‌شود و گربه‌ی شرودینگر، در یک جهان می‌میرد و در دیگری زنده می‌ماند.

اورت می‌گوید تابع موج، هرگز از بین نمی‌رود. این ایده، آزمایش فرضی گربه‌ی شرودینگر را گسترش می‌دهد. این فقط گربه نیست که در دو حالت زنده و مرده قرار دارد، بلکه دانشمندی که آزمایش را انجام می‌دهد نیز به دو دانشمند تبدیل می‌شود که یکی گربه‌ی مرده را می‌بیند و دیگری، گربه‌ی زنده را. این دوشاخه شدن، تنها به آزمایش «گربه» محدود نمی‌شود، بلکه درباره‌ی تمام نتایج ممکن پدیده‌های کوانتومی برای هر ذره‌ای، صدق می‌کند. بر اساس این تفسیر، جهان، همچون درختی عظیم که هر شاخه‌اش، دو شاخه می‌شود، مرتباً در حال تکثیر به نسخه‌های متفاوت بی‌شمار است. جهان‌هایی موازی وجود دارند که تنها اندکی با جهان ما متفاوت‌اند و جهان‌های دیگری هم هستند که با جهان ما، تفاوت عمده‌ای دارند.

در واقع، بر اساس نتیجه‌ی منطقی تفسیر دنیاهای چندگانه، هر چیزی که امکان‌پذیر است، هر قدر هم نامحتمل باشد، در نسخه‌ای از جهان، وجود دارد. در یک جهان، شما رئیس جمهور ایالات متحده هستید و در دیگری، به خاطر کشتار جمعی، در زندان به سر می‌برید. ایده‌ی وجود همه‌چیز، اگرچه عجیب به نظر می‌رسد، اما یکی از تعابیری است که حامیان پر و پا قرصی دارد. مکس تگمارک (Max Tegmark)، کیهان‌شناس، که بر اساس همین تفسیر، سلسله مراتب سطوح دنیاهای چندگانه را طراحی کرده، معتقد است توضیح مجموعه‌ای از جهان‌ها (گاه آن را چندگیتی multiverse نیز می‌نامند) که در آن‌ها هر چیزی ممکن است، آسان‌تر از توضیح یک جهان با قوانین مشخص است.«ویژگی مشترک هر چهار سطح چندگیتی، این است که ساده‌ترین و ظریف‌ترین نظریه، اساساً دنیاهای موازی را شامل می‌شود. برای انکار وجود این دنیاها، باید با اضافه‌کردن فرض‌های فاقد عمومیت و فرایندهایی که اساس تجربی ندارند، تئوری را پیچیده کنیم: فضای متناهی، از بین رفتن تابع موج و عدم تقارن هستی‌شناسانه. به این ترتیب، در نهایت، رأی ما به جایی می‌رسد که به نظرمان بی‌فایده‌تر و ناهنجارتر است: دنیاهای چندگانه، یا کلمات چندگانه.

تفسیر دنیاهای چندگانه، به یکی از دشوارترین پرسش‌های فلسفی کسانی که به ساخت ماشین زمان اندیشیده‌اند، پاسخ می‌دهد. اگر تنها یک جهان وجود داشته باشد، بازگشت به گذشته با ماشین زمان، و کشتن پدربزرگتان، باعث ایجاد پارادوکس خواهد شد. اما اگر دنیاهای چندگانه‌ی چندگیتی، وجود داشته باشند، دیگر پارادوکسی در کار نیست. در این صورت، کشتن پدربزرگتان، فقط باعث به وجود آمدن گذشته‌ی متفاوتی خواهد شد که شما در آن ضور ندارید. در شاخه‌ی دیگری از گذشته، پدربزرگتان زنده می‌ماند و شما متولد می‌شوید. اگر به شاخه‌ی اصلی خود برگردید، پدربزرگتان همچنان زنده خواهد بود. اگر در گذشته‌ی دیگر، که در آن پدربزرگتان را کشته‌اید، باقی بمانید، وجودی غریب خواهید شد بی هیچ گذشته‌ای.

به جز تفسیر کپنهاگ، بوهم و دنیاهای چندگانه، تفاسیر دیگری نیز از فیزیک کوانتوم وجود دارد. با این حال، به نظر می‌رسد تمام آن‌ها در نوعی «غرابت»، با هم مشترک‌اند. هنوز هم فیزیکدانان، بر سر این که کدام یک از این تفاسیر درست است، یا این که اصلاً این تفاسیر درست هستند یا نه، با هم اختلاف نظر دارند. راه حل این مسئله، در دست فیزیکدان باهوشی است که برای اثبات یا رد این تفاسیر، آزمایشی طرح کند.

آزمایش افشار

در این آزمایش که نخستین‌بار در موسسه خصوصی «مطالعات ازدیاد جرم بر اثر تابش» در بوستون انجام شده اساس بسیار ساده‌ای دارد، یک پرتو لیزرى به صفحه‌اى تیره که داراى دو سوراخ است تابانده می‌شود. از آنجا که به جای نور معمولی از لیزر استفاده می‌شود نیازى به صفحه اول که داراى یک سوراخ است نیست.

در فاصله دور از صفحه، لنزی قرار دارد که نوری را که از داخل هر روزنه می‌آید جذب می‌کند و مجددا پرتوهای منتشر شده را بر روی یک آینه متمرکز می‌کند که هر کدام را به یک آشکار ساز فوتون جداگانه باز می‌تاباند؛ بدین ترتیب می‌توان با توجه به شدت و ضعف پرتو لیزرى، تعداد فوتون‌هایی را که از هر سوراخ بیرون می‌آیند ثبت کرد.

ثبت مقدار فوتون‌هایی که به سمت هر روزنه می‌روند به مفهوم ماهیت ذره‌ای نورست، در این آزمایش همزمان دو خصلت ذره ا‌یی و موجی بودن نور به صورت مستقیم مشاهده نمی‌شود بلکه به شکل غیرمستقیم به اثبات می‌رسد. بدین منظور تعدادی سیم‌های نازک درست در جایی که باید فریزهای تاریک از الگوی تداخلی وجود داشته باشند، قرار داده می‌شوند. سپس یکی از روزنه‌ها بسته می‌شوند در این حالت از تشکیل الگوی تداخلی جلوگیری می‌شود و نور به راحتی همزمان با خروج از یکی از روزنه ها، منتشر می‌شود، به این ترتیب بخشی از نور که به سیم‌های فلزی برخورد می‌کند در تمام راستاها متفرق می شود  و اینکه نور به آشکار ساز فوتون‌های مربوط به آن روزنه برسد بی مفهوم می‌شود، در نتیجه آشکار ساز تعداد فوتون کمتری ثبت می کند اما هنگامی که روزنه بسته، کامل باز شد، شدت نور در هر آشکار ساز به مقدار اولیه (زمانی که سیم‌ها در محل قرار داده نشده بودند)  باز می‌گردد چون سیم‌ها در فریزهای تاریک از الگوی تداخلی قرار دارند که نور حاصل از دو شکاف یکدیگر را خنثی می‌کنند و در نتیجه هیچ نوری به آنها برخورد نکرده و بنابراین هیچ یک از فوتون‌ها منتشر نمی‌شوند.

به اعتقاد افشار ، این امر حاکی از وجود الگوی تداخلی یعنی حالتی است که شکل موجی نور نمود می‌یابد، در حالی که می‌توان شدت نور خارج شده از هر شکاف را نیز با یک آشکار ساز فوتون اندازه گیری کرد و تعداد فوتون عبوری از میان هر شکاف را تعیین کرد؛ بدین ترتیب این آزمایش بطلان اصل مکملیت را اثبات می‌کند

شرح آزمایش شهریار افشار

نوع افشاری ِ آزمایش دوشکافی چیزیه که فکر میشد که محاله. این آزمایش نشان میده که نور در یک زمان میتونه هم موج باشه و هم ذره!

نور لیزر از هر دو تا سوراخ نوک سوزنی عبور میکنه و با یه درشتنما (lens) متمرکز میشه روی دو تا آینه و بعد هر کدوم از دو شعبه ی نوری به یه آشکارساز فوتونی مربوط به خودش میره.افشار یه دونه از این سوراخها رو می بنده و خیلی با دقت یه توری از سیمهای افقی پشت درشتنما میذاره. مقداری از نور از دور سیمها پراکنده میشه که باعث میشه تصویر تنزل کنه و همچنین باعث میشه که به مقدار کم تعداد فوتونهایی که به آشکارساز ِ مربوط به سوراخ باز کم بشه.

افشار اون سوراخ بسته رو وا می کنه و تصویر بر میگرده به حالت اولش. اون سیمها هم دیگه هیچ نوری رو تحت تاثیر قرار نمیده و تعداد فوتونهای رسیده به آشکارسازها برمیگرده به حالت اولش. به نظر میرسه که این به این دلیله که سیمها در نوار تاریک تداخلی قرار داره (همون چیزی که براش گفتیم که سیمها باید یه جای خاص قرار داده بشه). پس هیچ نوری بهش نمیخوره

فقط در صورتی که نور موج باشه میتونه الگوی تداخلی بوجود بیار

پس این آزمایش به نظر میرسه که به نور در یک زمان هم خاصیت ذره ای و موجی میده.

منبع: شگفتیها دات کام

نظرات 0 + ارسال نظر
برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)
ایمیل شما بعد از ثبت نمایش داده نخواهد شد